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Problems with WFQ

= WFQ might give “unbalanced” service

* Large discrepancies between WFQ and GPS

* GPS (“Generalized Processor Sharing”)=bit-wise round robin
= Example scenario

¢ Flow 1: 50% link bandwidth, Flows 2-11: 5% link
bandwidth

e Packet arrivals: g1
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¢ What should a good schedule look like?
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Problems with WFQ

= WFQ emulates GPS
e GPS schedule:
» Flow 1 sends 10x of other flows
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* What are the finish times of the packets?
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Problems with WFQ

* Resulting WFQ schedule
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* Problems:
* Temporarily large differences between flows
* Bursty schedule for Flow 1
» Causes bad interactions with congestion control algorithms
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Problems with WFQ

= |llustration of differences
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WF2Q

= Worst-case Fair Weighted Fair Queuing (WF2Q)

¢ Achieves

s1 B3 B3
sz | B2

53 =

54
55
56
57
58
59
S10
511

ECE697AA — 12/02/08

balanced scheduling

B B B3 B B3 B3 B3 B3

==
=]
==
==
H
(=]

10 20

UMass Amherst — Tilman Wolf




WF2Q
= WF2Q properties

¢ Bounds on differences between WF2Q and GPS

g L

max
iWF2Q

k
di,GPS -
» Difference in departure time less than fraction of max pkt size

(0,r) =W gps (0,1) < Ly

|WFQ

» Long-term difference in service is limited to max packet size
fi
Wi,GPS (0’ r) _Wi,WFZQ (07 r) < (l_rj Li,max

» “Run-ahead” of WF2Q limited to fraction of max packet size
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WF2Q implementation

Packets need to be delayed to avoid run-ahead
* Packet should arrive at the last possible moment
= Rate-controlled service

* Regulator delays traffic 3;;;‘5“;“;;02'““’

* Scheduler gets packets | | Regulated Traffic
just in time ‘ Il\
 Delay == e
o i Input Traffic 3 O
Until GPS would have E/ Schedule

started the packet

Scheduler Rate Controlles
e Can be WFQ
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WF2Q operation

= Rate-controlled service example:
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= What is the schedule of original example?
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Specialized Hardware in Routers

= Performance demands custom logic implementation

IP lookup in hardware

Flow classification in hardware
Scheduling in hardware
Cryptographic algorithms in hardware
String search in hardware (IDS)

* Flexibility demands programmability

Changing classification algorithms
Changing protocols
New control and management functions

= Tension between performance and flexibility
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Processors Increase in Performance

= Moore’s law
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Technology Trends

= Never underestimate Moore’s law
* Figure from original 1965 paper
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Network Processors

= Embedded multi-core processors
e Optimized for high-performance 1/0
* Optimized for simple, highly parallel workloads

= Typical architecture
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Data Center

= Servers often end up in one place
* Network connectivity
* Power & cooling
* Management
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Data Center

= Multi-tier architecture

* Front end load balancer Ol
e Web servers [
¢ Back end databases ,
= Challenge Load balancer |
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Web Switching

= TCP connection needs to be established before
request is known
* G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D.

Saha, "Design, Implementation and Performance of a
ContentBased Switch," IEEE INFOCOM, March 2000.

CLIENT CLIENT PORT PowerPC SERVER PORT SERVER

~ SYN(CSEQ) Step1 Step2
Stepd SYN (DSEQ) Stepd

= ACK{CSEG+T)
DATA(CSEQ+1 Steps

ACK(DEEQ+1) Step 8

sYN (DsEq) LS9 sYN (SsEQ)

ACK(CSEQ+1) ACK(CSEQ+1)
DATA(CSEQ+1) DATA(CSEQ+1)
ACK(DSEG+1) ACK(SSEQ+1) |

DATA (DSEQ+1)
'ACK (CSEQelens+1

DATA (SSEQ4+1)}
ACK (CSEQ+len+1)

Step 16
ACK (SSEQ+len+1)
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Homework

= Read

* Anja Feldmann, “Internet clean-slate design: what and
why?,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 3, pp. 59-64, July 2007.

= SPARK
* Assessment quiz
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